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Abstract-The problem of designing prestress to maximize elastic capacity is treated analytically. Our for
mulation models structures comprised of a one-material elastic continuum, subject to a single deterministic load
configuration.

The equations needed to predict the optimal prestress design are derived. They are shown to comprise neces
sary and sufficient conditions for global maximum strength in the unconstrained design problem. The theory is
demonstrated on the design of prestress for a thick-walled cylinder.

INTRODUCTION

FREQUENTLY the structural function of a structure or machine part might be enhanced
through the installation of an appropriate initial stress state. Indeed, prestress is primary
to structural integrity for some material composites, such as prestressed concrete. Other
wise, for a structure made of either a single material or a composite, structural response is
almost always sensitive to initial stress state.

At least theoretically, the option to use prestress in design exists in proportion to this
sensitivity. Yet among topics in structural mechanics, there appears to be relatively little
literature on basics in the design of prestress. Some of the literature on particular design
problems is listed in [IJ and [2]. An unusual application of structural prestress is treated
in [3J, while [4J presents a method to evaluate optimal prestress. A formulation is given
in [5J for problems in the design of prestress to extremize the Euler load. Optimal prestress
relative to plastic collapse and relative to elastic capacity are related through theorems
stated recently by Nagtegaal [6].

This paper provides an analytical formulation for problems arising in the design of
prestress to maximize carrying capacity. The results apply to structures made of a single
material, where the structure experiences just one (deterministic) loading environment.
The development leading to these results is otherwise general; it is written in the next
section for an elastic continuum but the argument is similar for any structural element or
system where prestress might be used to increase elastic capacity. It also proves possible
to predict the collapse load for von Mises yield condition, simply by interpreting in an
appropriate way the outcome of our investigation for elastic structures.

An example is given to indicate how the theory of this paper may be used to predict
an optimal prestress configuration. However, no attempt is made to otherwise consider
the technical situations where prestress might be employed to practical advantage. Nor
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do we consider the technical processes by which a desired prestress state might be in
stalled in a structure.

FORMULATION

Our first objective is to show that the particular prestress field which maximizes the
total strain energy of the loaded system, within a prescribed limit on the local capacity of
the material, is the optimal one. Here optimum is identified with maximum load carrying
capacity. The local material capacity is stated in terms of a bound on permissible values
of the specific strain energy. This part of the demonstration of optimum prestress makes
use of the Virtual Work equation and Betti's reciprocity relation. Our development is
intended to apply to a linearly elastic solid, although so far as dependence on these funda
mental relations is concerned a more general interpretation is possible (see Fung [7J).

The total stress (J is represented as the simple sum of the initial or prestress field (JI

and the stress (JL associated with loading:

(I)

We take (JI to symbolize any prestress field among the set of self-equilibrated fields with
equal strain energy. In other words, it is required that the prestress strain energy UI((JI)

satisfy:

(2)

(3)

(4)

The value of the constant A is to be determined later.
For stress-strain and displacement fields (JL, t L and uL associated with tractions T

along portion Sr of the boundary, the virtual work equation states:

f TUL dS = r (JLtL dV.
ST JR

Region R corresponds to the region occupied by structural material. Also, from Betti's
theorem we may write

{ (JItL dV = { (JLtI dV = O.

The last equality in equation (4) follows from the fact that the (JI is self-equilibrated. (JI

represents any admissible prestress field, that is to say, any self-equilibrated field that
meets equation (2).

Making use of equations (1) and (4), equation (3) is rewritten:

f TLUL dS = f [(JL+(JI)(tL+tI)_(JltIJ dV == f ((Jt-(JI£I) dV. (5)
ST R R

Equation (5) is general. If superscript * is used to identify the optimal solution, we may
write in particular

f. TLUL* dS = f [((JL+(JI*)(tL+tI*)_(JI*tI*J dV == f ((J*t*_(JI*tI*)dV. (Sa)
ST R R
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We write a similar equation for the situation of arbitrary admissible prestress crI
. The load

in this case is designated ATL, and the associated loading stresses are AcrL.

A f TLuh dS = f [(AcrL+crI)(£L+£I*)_crI£h] dV == f (cr£* _crI£h) dV. (5b)
ST R R

As implied by the last equality of equation (5b)

cr = AaL +crI

Equation (5a) is subtracted from equation (5b) and use is made of equation (2) to
obtain:

(A-l)f TuL*dS = -f (cr*-cr)EdV+U(crh-crI). (6)
ST R

Using the definitions of cr and cr*, along with equation (3), equation (6) may be reduced to

(A-I) f TuL * dS = -(I-A)2U(~*)-2U(a*)+2U(a). (6a)
ST

Therefore since U(a*), U(a) and U(ah ) are positive definite for nonzero load, we find
A < 1 if U(a) < U(a*).

In other words, it has been shown that the prestress field which maximizes total strain
energy maximizes the load capacity. We have now to indicate how this maximizing pre
stress field might be determined. Recall that the total stress field is not to violate a specified
upper bound constraint. If the strain energy is expressed

U(cr) = LE(cr) dV,

then this constraint takes the form
E(cr) ::; E,

(7)

(8)

where E is simply specific strain energy and E > 0 represents the specified bound. We
note that E is proportional to the square of the octahedral shear stress.

One might at this stage seek to establish general necessary conditions for the extrema
of U(cr) within the constraint equations (8) and (2). However, this procedure requires that
several auxiliary variables be introduced and is unnecessarily lengthy. We will instead
simply state the (not unfamiliar) necessary condition that pertains, and verify that it is
sufficient to guarantee a maximum of U(a*). The cited necessary condition is

E(cr*) = E, constant. (9)

In other words, if the constraint (8) is interpreted using slack function S2 in the form

E-E(a)-s2 = 0, (10)

(11)

according to equation (9), S == 0 for the optimum solution. This is easily verified. Sub
stituting for E(a) from equation (10) into U(a) of equation (7), we obtain

U(cr) = LE(cr) dV

= LEdV - LS2 d V,
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(12)

but according to equation (9), fEd V = f E(a*) dV = U(a*). Thus (11) becomes

U(a) = U(a*)- { 52 dV

whereby we have U(a*) > U(a) for a* i= a.
We note that an interpretation may now be given to the value of the constant C2 in

equation (2). That is, for a given load the prestress energy should take on a value ap
propriate to the condition equation (9). Note that with the constraint on prestress expressed
as in equation (2), there is no implication on the local values of the prestress from the
condition just described.

AN EXAMPLE

Given the existence of an optimum prestress field a h for a particular structure and
load TL, we have shown equation (9) to be necessary and sufficient for the determination
of the aI *. We apply these results to obtain the optimum solution in the Lame problem,
as an example application.

The problem is written most conveniently in terms of a stress function, say ¢. In the
axisymmetric situation, equilibrium is satisfied if:

arr = ¢Ir

a88 = ¢'

ar8 = 0

where prime indicates derivative w.r.t.r. Suppose the cylinder extends from r = a to r = b,
and is subject to internal pressure p only. Then we seek a function ¢(r) defined over
rE[a,b], with values ¢(a) = -ap at r = a and ¢(b) = 0 at r = b. The optimum solution,
say ¢*, must also satisfy equation (9). For this latter condition, we note that E(r) - [(#r)2 +
¢'2 _ 2v¢¢'Ir], and so the requirement equation (9) is expressed:

(¢*lr)2 +(¢*/)2 -2v¢*¢*'lr = E. (13)

Equation (13) is satisfied by a function ¢ - r. It is not possible to meet the boundary
conditions with this solution, however, so another solution must be found by integrating
equation (13). To facilitate this step, the equation is transformed according to:

¢ = CrljJ,

1 ~ P = ria ~ Po·

The results of this transformation are:

C = constant
(14)

with constants

e = 2(1-v)

v = Poisson ratio

(15)
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and
"'(1) = -piC

"'(0) = o.
Equation (15) is in separable form, i.e.

1539

(16)

(17)

The result from integration of the L.S. of equation (17) is expressed in terms of the function
P(p) defined by

2 cos P(p) = - "'(p)
This result is:

=+= P-et Ln(et cos p=+=sin p) = (1 +e)(et /2) Ln p+ B.

Equation (16) requires

(18)

(19)

(20)
cos P(1) = pI2C

cos P(Po) = O.

If the positive signs are chosen in equation (19), the upper limit on P(p) is P(Po) = n12.
To complete a specific example, say the load p relates to the (specified) material capacity
according to (pI2e) = 0·25. Then P= cos - 10·25 = 1·32, and from equation (19) we find
B = 0·453. Applying equation (19) to the boundary p = Po yields Po = 1-46, and the
solution is completely determined. The radial stress as a function of p for this case is
indicated in Fig. 1. The prestress field say q/ is now obtained from

q/ = ¢_¢L

where ¢L represents the (known) Lame Solution.

.,.
I.
,,

b
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FIG. I.
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All solutions for optimum prestress of the internally loaded cylinder may be sum
marized on a single plot of Po vs pI2C (see Fig. 2). The parameter pl2C is the so called
design index. The upper limit point on this plot corresponds to the situation where any
increase in internal pressure would result in a violation of the limit of material capacity
E(p) :so; E, regardless of prestress. In other words, there is no occasion to build such a
cylinder thicker than the one indicated by this point.

4·0

p/2C

FIG. 2.

DISCUSSION

In the present paper, we assumed the form of the structure as given and considered
only variation of the prestress field. It was demonstrated how to predict the optimum pre
stress field from among arbitrary initial stress states. Even where the choice among prestress
states is not free, the conclusion drawn from equation (6a) still applies. That is, considering
constrained prestress states the load capacity is maximized by the particular prestress
field which maximizes total strain energy.

Furthermore, the results presented here do not depend on homogeneity of material,
and the theorem therefore pertains to situations where prestress is introduced through
prestressing cables, fibers, or by the installation of shrinkage or misfit stresses. Thus,
the result, equation (6a), may be useful as a guide to the selection of prestress in cases
where dissimilar materials are combined with prestressing to meet certain strength or
other technological constraints.

Also, as noted in the Introduction, the collapse load (for ideally plastic behavior)
may be predicted directly from a solution of the unconstrained prestress design problem.
To see this, note that if the Poisson ratio is set equal to ! in equation (13), and the right
side is taken equal to the square of the yield stress, the equation simply expresses the
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von Mises yield condition. Thus, the optimal prestress solution in this case corresponds to
uniform satisfaction of the yield condition, and the solution therefore predicts the col
lapse load. We observe as well that with our simple one-parameter load, this collapse
capacity equals the shakedown load for the structure.
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A6cTpaKT-06pa6aTbIBaeTcJl aHaJlHTH'IeCKH 3a.aa'la pac'leTa npe.aBapHTenbHoro HanpJllKeHHJI, c UMblO
yoenH'IeHHJI .ao KpaliHocTH ynpyroll cnoco6HoCTH. KOHCTPYKUHH Mil npeMolKeHHblx Mo.aeneA
H3roToBneHbi H3 oMo-MaTepHanbHolI, ynpyroll cnnolllHoli cpe.abl, no.a'lHHeHHoA e.aHHH'IHolI, .aeTepMHHHc-
TH'IeCKOA KOHl!>HrypauHH Harpy3KH. .

Onpe.aenlilOTCJI ypaBHeHHII, HYlKHbl .anJl npeAcKa3aHHJI onTHManbHoro paC'IeTa npeABapHTenbHoro
HanpalilKeHHII. j],oKa3bIBaeTCJI, 'ITO 3TH ypaBHeHHII 3aKnlO'IalOT B ce6e Heo6xo.aHMble H .aOCTaToyHble
ycnoBblll, .anJl paCCMaTpHBaHHII B uenoM MaKCHManbHoll npo'lHOCTH, B 3a.aa'le paC'feTa KOHCTpyKUHH,
He CTeCHeHHoA CBJl3aMH. TeopHIi YKa3aHa Ha npHMepe pac'fera npeABapHTMbHoro HanplilKeHHJI
TonCTOCTeHHoro UHnHHnpa.


